
The Sketchy Database: Learning to Retrieve Badly Drawn Bunnies

Patsorn Sangkloy1, Nathan Burnell2, Cusuh Ham1, James Hays1

1Georgia Institute of Technology 2Brown University

Figure 1: Samples of photo–sketch pairs from the Sketchy database. We show two photos from the Squirrel, Kangaroo, Elephant, Teapot,
Cat, and Hedgehog categories. Below each photo are two sketches produced by crowd workers. Notice the variation in sketches across object
instances and between artists. We use the Sketchy database as training and test data for sketch-based image retrieval.

Abstract

We present the Sketchy database, the first large-scale collection of
sketch-photo pairs. We ask crowd workers to sketch particular pho-
tographic objects sampled from 125 categories and acquire 75,471
sketches of 12,500 objects. The Sketchy database gives us fine-
grained associations between particular photos and sketches, and
we use this to train cross-domain convolutional networks which
embed sketches and photographs in a common feature space. We
use our database as a benchmark for fine-grained retrieval and show
that our learned representation significantly outperforms both hand-
crafted features as well as deep features trained for sketch or photo
classification. Beyond image retrieval, we believe the Sketchy
database opens up new opportunities for sketch and image under-
standing and synthesis.

Keywords: Sketch-based image retrieval, Deep learning, Siamese
network, Triplet network, Image synthesis
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1 Introduction

The goal of Sketch-based image retrieval is to allow non-artist users
to draw visual content (usually objects) and then find matching ex-
amples in an image collection. Sketch-based image retrieval is an
alternative or a complement to widely used language-based image
querying (e.g. Google image search). In the computer graphics
community, sketch-based image retrieval has been used to drive im-
age synthesis approaches such as Sketch2Photo [Chen et al. 2009]
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and PhotoSketcher [Eitz et al. 2011b]. Sketch-based image retrieval
has been studied for nearly 25 years [Kato et al. 1992], but is es-
pecially relevant as touch and pen-based devices have proliferated
over the last few years.1

Sketch-based image retrieval is challenging because it requires
comparison across two domains (sketches and photos) that are indi-
vidually difficult to understand and have distinct appearance. Typ-
ical approaches propose a hand-designed feature, usually focused
on edges or gradients, which is somewhat invariant across domains.
But as we will show (Section 5) there is a lot of room for improve-
ment over such features.

The primary reason sketch-to-image comparison is hard is that hu-
mans are not faithful artists. We tend to draw only salient object
structures and we tend to draw them poorly. Shapes and scales are
distorted. Object parts are caricatured (big ears on an elephant), an-
thropomorphized (smiling mouth on a spider), or simplified (stick-
figure limbs). Nonetheless these sketches are usually understand-
able to other humans.

It is appealing to try and learn the correspondence between human
sketches and photographic objects since the task seems to require
high-level understanding. Recent progress in deep convolutional
networks has enabled better understanding of sketches and object
images, individually. The 250 categories of sketches collected by
Eitz et al. [2012a] and the 1000 categories in the ImageNet chal-
lenge [Russakovsky et al. 2015] can be recognized with roughly
human-level accuracy. This suggests a “retrieval by categorization”
approach in which relevant images are returned if they appear to be
the same category as a query sketch. In fact, this strategy is con-
sistent with common sketch-based image retrieval benchmarks [Hu
and Collomosse 2013] where retrieval results are correct as long as
they are the same category.

However, we argue that sketch-based image retrieval needs to go
beyond category recognition. If a user wants objects of a particu-
lar category, then language already gives them an efficient way to
find huge amounts of relevant imagery. The appeal of sketching is
that it allows us to specify fine-grained aspects of an object – pose,
parts, sub-type (e.g. office chair versus dining chair) – and many
of these fine-grained attributes are clumsy to specify with language

1Touch-enabled smartphones and tablets outnumber desktop and
portable PCs by 4 to 1 as of 2014, while the market was roughly equal
in 2010 [Mainelli et al. 2015].
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(e.g. “office chair with no arms viewed from slightly above and to
the side” or “castle with two pointy towers and a crenelated battle-
ment joining them”). Even if such text descriptions did encapsulate
user intent, fine-grained text-based image retrieval is an open prob-
lem. This need to retrieve semantically and structurally appropriate
objects leads Sketch2Photo [Chen et al. 2009] to synthesize scenes
using a combination of language and sketch – language typically
specifies the category and sketch specifies the shape. We believe
sketches alone can be sufficient.

Our goal in this paper is to learn a cross-domain representation for
sketches and photos which is reliable not just at retrieving objects
of the correct category, but also objects with fine-grained similarity
to the sketch. We utilize deep learning techniques which have led
to dramatic improvements in various recognition tasks, but which
require large amounts of supervised training data. In particular, for
our cross-domain deep learning we will need thousands of pairs of
matching sketches and photos. Because no such database exists we
ask crowd workers to draw thousands of photographic objects span-
ning 125 categories. We do not allow participants to trace photos,
but instead reveal and then hide photos so that they must sketch
from memory similar to the way in which a user of a sketch-based
image retrieval system would be drawing based on some mental im-
age of a desired object. The cross-domain representation we learn
proves effective for sketch-based image retrieval and we believe
the Sketchy database supports many interesting investigations into
sketch and image understanding.

We make the following contributions:

• We develop a crowd data collection technique to collect rep-
resentative (often bad!) object sketches prompted by but not
traced from particular photos. The Sketchy database contains
75,471 sketches of 12,500 objects spanning 125 categories.2

• We demonstrate the first deep learning approach to sketch-
based image retrieval. We learn a common feature space for
sketches and photos which enables not only sketch-based im-
age retrieval but also image-based sketch retrieval or sketch-
to-sketch and photo-to-photo comparisons.

• We show that our learned representation leads to significantly
better fine-grained sketch retrieval than existing methods and
even outperforms a hypothetical ideal “retrieval by categoriza-
tion” method.

Outline. In the next section we discuss related work. Section 3
describes the creation of the Sketchy database. Section 4 describes
our deep learning experiments. Section 5 evaluates our learned rep-
resentation for the task of sketch-based image retrieval. Section 6
shows sketch-constrained average images inspired by AverageEx-
plorer [Zhu et al. 2014]. Section 7 discusses limitations and possi-
ble future applications of the Sketchy database.

2 Related Work

Sketch-based image retrieval. Numerous representations have
been proposed to retrieve images from sketch queries [Kato et al.
1992; Del Bimbo and Pala 1997; Sclaroff 1997] or color draw-
ings [Jacobs et al. 1995]. See Smeulders et al. [2000] for a sur-
vey of classical approaches. More recent methods propose increas-
ingly sophisticated feature representations, often inspired by ob-
ject recognition approaches in the computer vision community [Cao
et al. 2011; Shrivastava et al. 2011; Cao et al. 2013; Saavedra and
Barrios 2015].

2the database can be downloaded from http://sketchy.eye.gatech.edu/

Benchmarks for sketch-based image retrieval are fairly small, e.g.
43 sketch-photo pairs [Eitz et al. 2010] or 31 sketches each with
40 photos ranked by similarity [Eitz et al. 2011a]. The Flick15k
dataset [Hu and Collomosse 2013] contains 330 sketches and
14,660 photos spanning 33 categories, but there are no fine-grained
associations across domain – the benchmark is equivalent to cate-
gorization. These benchmarks have been useful to the field but are
not large enough to learn from.

The tendency to evaluate sketch-based image retrieval as cate-
gory retrieval was noted by Li et al. [2014] and they propose a
“fine-grained” retrieval method based on deformable part mod-
els [Felzenszwalb et al. 2010] trained on the 14 overlapping cat-
egories of the Pascal VOC [Everingham et al. 2010] and Eitz 2012
datasets. At training time there is still no instance level sketch-
photo association, but their test set scores sketch-photo pairs in
terms of viewpoint, zoom, pose, and shape similarity. We share
the motivation for “fine-grained” retrieval and we evaluate our rep-
resentation learned from the Sketchy database on their benchmark
(Table 1).

The most similar related work is the concurrent “Sketch Me that
Shoe” [Yu et al. 2016] which also collects a database of sketch-
photo pairs and uses deep learning to learn a shared embedding.
Their dataset is smaller – 1,432 sketch-photo pairs of shoes and
chairs – but more densely annotated with 32,000 triplet rankings.
Because the dataset is smaller, edge detection is used to render
photos like sketches instead of learning the entire cross-domain
transformation as we do. The paper also proposes more aggres-
sive, domain-specific “jittering” to amplify the value of each train-
ing sketch.

Sketch classification. “How do Humans Sketch Objects?” [Eitz
et al. 2012a] introduced a dataset of 20,000 sketches spanning 250
categories and demonstrated that bag-of-features representations
built on gradient features could achieve reasonable classification ac-
curacy (56%). Schneider and Tuytelaars [2014] showed that Fisher
vector encoding of local features significantly improved recogni-
tion accuracy (69%). Sketch-a-Net [Yu et al. 2015] showed that
deep features can surpass human recognition accuracy – 75% com-
pared to the 73% accuracy from crowd workers in Eitz 2012. Su
et al. [2015] focus on 3D model classification with deep features
but show that their network can be adapted to match the state of the
art in sketch recognition or sketch-based 3D model retrieval. We
use the Eitz 2012 dataset to pre-train the sketch half of our cross-
domain embedding approach.

Deep learning for cross-domain embedding. Our technical
approach is similar to recent cross-domain embedding methods
that train deep networks to learn a common feature space for
Sketches and 3D models [Wang et al. 2015], ground and aerial
photographs [Lin et al. 2015], Iconic and in-the-wild product pho-
tos [Bell and Bala 2015], and Images and 3D models [Li et al.
2015]. We experiment with the tools used in these works such as
Siamese networks trained with contrastive loss [Chopra et al. 2005;
Hadsell et al. 2006], but find that triplet or ranking loss [Wang
et al. 2014] performs better. Our best performing method com-
bines the Triplet loss with a classification loss similar to Bell and
Bala’s [2015] combination of Siamese and classification losses.

Sketch-based image retrieval for image synthesis. We are moti-
vated by Sketch2Photo [Chen et al. 2009] and PhotoSketcher [Eitz
et al. 2011b], which synthesize scenes by compositing objects and
backgrounds retrieved based on user sketches. PoseShop [Chen
et al. 2013], follow on work from Sketch2Photo, addresses the fact
that bad user sketches cannot be matched reliably by letting users
pose a 2D skeleton and then generating a contour query from a mesh
attached to the 2D skeleton. Improved sketch-based object retrieval



Figure 2: A spectrum of “sketchability” for three ImageNet cat-
egories: horse, apple, and rabbit. This subjective ranking is de-
termined by answering the question, “How easily could a novice
artist capture the subject category and pose?” The most difficult
photographs, such as those shown on the far right of the figure, are
excluded from our data set.

would make these approaches simpler or more reliable.

Sketch-photo pairs for sketch synthesis. Berger et al. [2013] and
Limpaecher et al. [2013] collect expert and amateur portrait draw-
ings, respectively, to aid in the creation of new portraits. The 14,270
face portraits collected through a Facebook game by Limpaecher et
al. [2013] is one of the largest collections of sketches to date.

3 Creating the Sketchy Database

In this section we describe the creation of the Sketchy database,
which spans 125 categories and consists of 12,500 unique pho-
tographs of objects and 75,471 human sketches of objects inspired
by those photographs.

3.1 Category Selection

In order to choose the 125 categories in our data set, we use the
same criteria defined in “How Do Humans Sketch Objects?” [Eitz
et al. 2012a]: exhaustive, recognizable, and specific. That is, the
categories should cover a large number of common objects and each
category should have recognizable sketch representations. In addi-
tion, we add a “sketchability” criterion (Figure 2). Some object cat-
egories may be fairly easy to sketch from memory, but photographs
of those objects tend to be too challenging to sketch or the resulting
sketches may be too uninformative due to the nature of photographs
common to those objects. This concept is illustrated in Figure 2 and
further discussed in the following sections.

To start, we consider all ImageNet [Russakovsky et al. 2015] cat-
egories for which there are bounding box annotations, with prefer-
ence given to categories contained within the Eitz 2012 sketch data
set. We hope our data set will both complement and extend these
data sets. Ultimately, 125 categories are included in our data set. Of
these, 100 categories exist within the Eitz 2012 data set. Where ap-
propriate, multiple, related ImageNet categories (e.g. specific dog
breeds) are combined into a single category in order to add visual
diversity and increase the number of “sketchable” photographs.

3.2 Photograph Selection

We cannot expect novice artists to draw photographs of horse eyes
and crocodile teeth in meaningful ways, yet these extreme pho-
tographs are prevalent in Internet-scale image data sets. In order

Figure 3: Sketch collection interface. A participant initially sees a
blank canvas. (a) Pressing a button reveals (b) a photo for 2 sec-
onds followed by (c) a noise mask for one second. (d) The partici-
pant then uses pencil, eraser, and undo tools to create their sketch.

to select appropriate photographs for our data set, we first elim-
inate all photographs that do not have exactly one bounding box
annotation. Next, we manually review the remaining photographs
and eliminate those with 1) disturbing or inappropriate content, 2)
poor or degraded image quality, 3) significant manipulation or wa-
termarks, 4) incorrect category label, and/or 5) ambiguous content
due to occlusion or object pose. Overall, we review a total of 69,495
photographs and deem 24,819 as “sketchable”. This process results
in a median of 147 sketchable photographs per category. Categories
with fewer than 100 sketchable photographs are not included in our
data set. As part of this process, a volunteer annotates each re-
maining photograph with a subjective “sketchability” score, rang-
ing from 1 (very easy to sketch) to 5 (very difficult to sketch). Each
category’s 100 photographs are chosen at random from this pool
with a targeted distribution of 40 very easy, 30 easy, 20 average, 10
hard, and 0 very hard photographs.

3.3 Sketch Collection

The creation of sketch-photo pairs is the most critical challenge of
creating the Sketchy database. There are two broad strategies –
prompt the creation of sketches from particular photos [Eitz et al.
2010] or have people associate existing sketches to photos, e.g. by
ranking a list of potentially matching photos [Eitz et al. 2011a].
We choose the first strategy because it is better able to create fine-
grained, instance-level associations. With the second strategy, there
may not exist a photo that is particularly similar to a sketch.

However, the first strategy, photo-prompted sketch creation, is
somewhat the inverse of motivating task – sketch-based image re-
trieval. Does a user drawing of a particular photo resemble a sketch
retrieval query? For instance, a naive approach to sketch creation
would be to have users trace over a particular photo. Such draw-



ings would effectively be boundary annotations as in the Berkeley
Segmentation Dataset [Martin et al. 2001]. If we thought faith-
ful object boundaries were satisfactory “sketch” training data we
could use existing segment annotations from datasets such as La-
belMe/SUN [Xiao et al. 2014] or MS COCO [Lin et al. 2014]. As
Figure 1 shows, the sketches we collect are very different from such
annotations. We also attempt to train on MS COCO boundaries
with no success in Section 5.

The key to collecting “realistic” sketches is to prompt workers with
a particular photo but then hide it so they must draw from mem-
ory. This strategy was used in Eitz et al. [2010] to collect 43
sketches and also in Antol et al. [2014] to collect ‘’‘clipart” an-
notations which correspond to the most salient scene structures.
The choice of which object structures people preserve (or hallu-
cinate) when sketching a particular photo is interesting in itself, in-
dependent from the goal of sketch-based image retrieval, and could
support research on human visual memory of objects [Brady et al.
2008; Brady et al. 2013]. We use the fact that the Sketchy database
implicitly encodes image salience to produce visualizations in Sec-
tion 6.

Figure 3 shows our sketch collection interface. Each participant
is provided with a randomly selected category name and a blank
canvas on which to sketch. Upon pressing a specified button, the
participant is shown a photograph containing an example of the se-
lected category. The photograph is only visible for two seconds, but
the participant can view it as many times as needed. However, each
viewing clears the sketch canvas. In order to discourage rote bound-
ary reproduction, a noise mask is displayed after the photograph
is revealed and before the participant may begin sketching. Noise
masking, often used in psychology experiments, aims to destroy
low-level visual representations in visual working memory [Grill-
Spector and Kanwisher 2005; Nieuwenstein and Wyble 2014]. In
our case, this prevents participants from “tracing” an afterimage in
visual working memory and hopefully produces more diverse and
realistic sketches.

A participant is instructed to 1) sketch the named subject object
with a pose similar to that of the object in the photograph, 2) sketch
only the subject object, and 3) avoid shading in regions. Since we
have bounding box details for the object in the photograph, we are
not concerned with sketch size nor location in the canvas as they
can be aligned after the fact. The sketch canvas supports touch-
enabled devices and provides a means to sketch, undo, redo, clear,
and erase. Each sketch is stored as an SVG file. We extend the
SVG format to include high resolution time details; not only do
we record the stroke start and end times, but also fine-grained tim-
ing along each stroke. Figure 4 examines the drawing tendencies
of our participants. Prior research has shown that stroke order and
length are important in determining the relative importance of a
given stroke [Yu et al. 2015]. If the speed at which a stroke is drawn
indicates care and/or concentration, then speed, too, may be useful
in determining the relative importance of a stroke. The vector rep-
resentation of strokes allows us to re-render the drawings in various
ways (different stroke widths, stroke width related to velocity, etc.)
but we maintain the same fixed width stroke representation as used
in the data gathering through all experiments. Varying the render-
ing style did not significantly influence the learning experiments in
Section 4, but we believe there is potential to artificially increase
the training set size through numerous stroke-based augmentations
as in concurrent work [Yu et al. 2016].

Participants. When it comes to sketching a photograph, there is
no single correct answer. The artist’s skill, motivation, subject fa-
miliarity, and input device can all influence the resultant sketch. In
order to capture this diversity we collect five sketches per photo-
graph each from a different participant. We use Amazon Mechani-

Figure 4: Left: as in Eitz 2012 we find that the participants follow
a coarse-to-fine sketching strategy and draw shorter strokes over
time. Right: Over their drawing time, participants spend increas-
ingly more time deliberating between strokes as measured by the
fraction of time spent idle. For both plots, the duration of each
sketch session is normalized to the same time duration.

cal Turk (AMT) to increase the number of potential participants and
resultant sketch diversity. We use a qualification test to ensure each
potential participant understands the sketching process. The qualifi-
cation test asks the candidate to sketch three different photographs,
each carefully chosen to test the candidate’s understanding of one
or more rules. We manually review these qualification results for
compliance and allow those who pass to work on our sketch col-
lection tasks. We receive 1,204 qualification test submissions, from
which we identify 644 qualified individuals. Over the course of six
months, these participants collectively spent 3,921 hours sketching
for our data set.

Data Validation. Even though we use a qualification test to screen
the crowd workers, mistakes, misunderstandings, and abuses are in-
evitable. Instead of using the crowd to validate its own work, we
opt to manually review all sketches. We use a custom software tool
to display each photograph along with all its sketches and then tag
each sketch in one of five ways: 1) correct, 2) contains environment
details or shading, 3) incorrect pose or perspective, 4) ambiguous,
or 5) erroneous. All of these sketches remain in the data set, even
if deemed incorrect in some way. Inclusion is up to the judgment
of the database user and is highly task dependent. The only truly
incorrect sketches are those marked as erroneous. In order to in-
crease the overall quality of the data set and bring the total num-
ber of sketches per photograph closer to five, we collect additional
sketches to replace those that are not tagged as correct. This results
in a total of 75,471 sketches, with 64,560 correct, 6,249 ambiguous,
2,683 with an incorrect pose, 1,061 including environment details,
and 918 erroneous.

Comparison to Eitz 2012. Our participants spent a similar amount
of time drawing sketches as is reported in Eitz 2012. The median
sketch time is 85 seconds, with the 10th and 90th percentile at 41
and 281 seconds (compared to 86, 31, and 280 seconds, respec-
tively). The median number of strokes per sketch is 14, compared
with 13 in Eitz 2012.

While the stroke-level statistics are similar to the 20,000 sketches of
Eitz 2012, we believe the distribution of sketches is quite different.
Eitz 2012 prompted workers with an object category and nothing
more. The resulting sketches are very iconic. For example 85% of
buses are drawn directly from the side and the remainder from 45◦.
Not a single duck is drawn in flight. 80% of calculators are up-
right and viewed from the front. People chose easy-to-draw poses



Figure 5: Our adaptation of the GoogLeNet architecture to cross-
domain embedding. The embedding loss can be either contrastive
loss (as used in a Siamese network) or triplet loss. For triplet loss,
the photo branch would take two inputs, one for the matching photo
and one for a dissimilar photo. The sketch and photo networks
learn independent weights θ1 and θ2.

and viewpoints, which is partly why the dataset is fairly easy as a
recognition benchmark. But the Sketchy database contains objects
in a variety of poses, states, and viewpoints because workers were
prompted with particular photographs. While the ImageNet photos
are themselves somewhat iconic, they still lead to greater sketch di-
versity than free recall. Working from a particular photo also con-
strained the sketches to be somewhat less caricatured (fewer big
teeth and ears on rabbits).

4 Learning a Cross-domain Mapping

Overview. In this section we use the Sketchy database to learn
a shared embedding for sketches and photos such that distances
in the learned feature space are related to structural and semantic
similarity between sketches and photos. We follow the trend of re-
cent works which use deep convolutional networks (CNNs) to learn
cross-domain embeddings [Wang et al. 2015; Lin et al. 2015; Bell
and Bala 2015; Li et al. 2015], but the details of our network archi-
tectures and training strategies vary considerably.

Our deep networks which achieve the highest performance on our
benchmarks required rather complex training regimes. There are
two reasons for this: (1) While the Sketchy database is large rela-
tive to existing sketch databases, deep networks have tens of mil-
lions of free parameters to learn and thus demand large amounts
of training data. We see benefits but also complications from pre-
training on additional datasets. (2) We have two separate notions
of similarity – instance-level similarity between a sketch and the
exact photo that elicited it, and category-level similarity between a
sketch and all photos in that category. Making use of both forms
of supervision during training increases performance at the cost of
added complexity.

We examine combinations of three different loss functions for train-
ing deep networks – Siamese loss, Triplet loss, and Classification
loss. We first give an overview of these loss functions.

Siamese Network. In a Siamese network [Chopra et al. 2005; Had-
sell et al. 2006] a pair of convolutional networks each accept an in-
put. Supervision is binary – either the input pair should be similar
or dissimilar. Siamese networks use a “contrastive” loss function
of the form L = l ∗ d(S, I+) + (1− l) ∗max(0,m− d(S, I−))

where S is an embedded sketch, I+ is an embedded image of the
same object instance, I− is an embedded image of a different object
instance, d() is Euclidean distance,m is a margin, and l ∈ {0, 1} is
label with 1 for positive and 0 for negative pair. Dissimilar sketch–
image pairs will be pushed apart unless their distance is already
greater than the margin. Similar sketch–image pairs will be pulled
together in the feature space.

Triplet Network. Triplet networks [Wang et al. 2014] are simi-
lar to Siamese networks except that the supervision is of the form
“input a should be closer to input b than to input c”. Triplet net-
works use a “ranking” loss function of the form L = max(0,m+
d(S, I+)−d(S, I−)). This ranking loss function can express more
fine-grained relationships than the Siamese loss which can only say
pairs of points should be near or far.

Traditionally, while a Siamese network can be conceptualized as
two networks and a Triplet network can be conceptualized as three
networks there is really only a single network used repeatedly for
all inputs. This makes sense when the embedding being learned is
not cross-domain. For example, Hadsell et al. [2006] addresses the
within-domain task of face verification where input faces are clas-
sified as same or different identity. But our inputs – sketches and
photos – are dramatically different and it makes sense to train two
networks with independent weights to embed the sketches and pho-
tos. This is a departure from most previous deep embedding works,
even those that are cross-domain. Lin et al. [2015] find that inde-
pendent weights barely improved ground-to-aerial image matching
and Bell and Bala [2015] use shared weights for iconic-to-internet
product photo matching.

Using shared weights also makes sense if you can convert between
domains before passing inputs into the CNNs. For example, Wang
et al. [2015] addresses sketch-based 3D model retrieval and renders
the 3D models like sketches. An analogous approach for us would
be to run edge detection on photos before using a Siamese or Triplet
network with shared weights. Yu et al. [2016] take this approach.
But we suspect that detected edges are not a good proxy for the
image structures that humans draw, and it makes more sense to let
the deep networks learn the cross-domain transformation from data.

Classification loss. A successful sketch-based image retrieval sys-
tem needs to respect both the semantics (e.g. object category) and
fine-grained details (e.g. pose, shape, viewpoint, and other at-
tributes) of a user query sketch. If a user sketches a horse, then
it is not satisfactory to retrieve cows, zebras, and dogs in the same
pose. While the Siamese or Triplet losses encourage CNNs to be
sensitive to fine-grained sketch-to-photo similarities, we can im-
prove performance by including a classification loss when training
our deep networks. We use the traditional “softmax” classification
loss with the 125 categories of the Sketchy database and this helps
ensure that retrieval results match the category of a query. The same
approach was used by Bell and Bala [2015] to improve image re-
trieval.

Network architectures. We experiment with two deep network
architectures – AlexNet [Krizhevsky et al. 2012] as implemented
in Caffe [Jia et al. 2014] and the deeper GoogLeNet [Szegedy
et al. 2014]. We omit the auxiliary classification loss layers of the
GoogLeNet architecture since their effect was negligible in our ex-
periments. Figure 5 visualizes our cross-domain network.

4.1 Data preparation and Pre-training

Pre-training. We first train each subnetwork for sketch and im-
age classification. The networks independently learn weights ap-
propriate for each domain without any initial constraints for com-
mon embedding. We start with AlexNet or GoogLeNet trained on



ImageNet. The sketch network is fine-tuned to recognize the 250
categories from Eitz 2012 [2012a]. We divide the dataset into a
train/test split of 18k/2k and after fine-tuning achieve 77.29% ac-
curacy with AlexNet and 80.85% accuracy with GoogLeNet (this
represents the state of the art on Eitz 2012 to the best of our knowl-
edge).

Cross-domain classification. Up to this point, each network is
trained separately for their specific domain and the ‘features’ com-
puted by these networks are not comparable (or even the same
dimensionality at the highest layer). As before, we train the net-
work with classification loss only, but switch to training using the
125 sketch categories of the Sketchy database for sketch network
branch. We also collect 1000 Flickr photos for each of our 125
categories and use them to further train image branch. This means
that the activations at the top of each network are comparable 125-
dimensional features, where each dimension of the feature is a mea-
sure of confidence of the presence of a particular category. These
125 dimensional features are used as a “retrieval by categorization”
baseline which we evaluate in Section 5.

Fine-grained training data. As discussed in Section 3, the
Sketchy database provides fine-grained correspondence between
sketches and photos that can be used as positive pairs for training
our cross-domain CNNs. We hold out 10% of the data for testing.
The only ’jittering’ we use is mirroring. Positive sketch-photo pairs
are mirrored jointly because we do not want to be mirror invariant.
After mirroring, the 90% of data used for training provides more
than one hundred thousand positive pairs (22,500 images with at
least 5 sketches each) and more than a billion negative pairs.

Sketch Normalization. We uniformly scale and center sketches
from the Sketchy database so that the learned representation is not
sensitive to the absolute location and scale of a sketch. This nor-
malization makes our benchmark harder because it breaks the spa-
tial correspondence between sketches and photos. But in a realistic
sketch-based image retrieval scenario we assume the user wants to
be invariant to location and scale and instead wants to match pose,
shape, and other attributes. We release the aligned sketch-photo
data, though, as it would be more appropriate training data for some
scenarios (e.g. learning to render photos like sketches).

4.2 Training Cross-Domain Embeddings

We now train deep networks to embed sketches and photos into a
1024 dimensional space with Siamese and Triplet loss functions.
These Siamese and Triplet losses are used simultaneously with a
softmax classification loss.

Training with Siamese contrastive loss. The inputs for Siamese
training are a sketch-photo pair, each passed to the corresponding
subnetwork, and supervision as to whether the pair is matching or
not. The contrastive loss has a free parameter, the margin, which
can significantly affect the learned embedding. Since our dataset
can be interpreted as having two discrete levels of similarity – cat-
egorical similarity and instance similarity – we train the Siamese
network in two phases. First, we use a large margin and label all
sketches and photos from the same category as matching (this is
effectively categorical supervision but not the typical categorical
softmax loss function). Next, we use a small margin and treat only
instance level sketch-photo pairs as matching. E.g. a sketch of a
rabbit and a photo of a rabbit would be pushed apart if the sketch
was not generated from that photo. In each epoch, we train with 10
times more negative than positive pairs while maintaining a 50% ra-
tio by repeating positive pairs accordingly. Since negative pairs are
plentiful we resample new negative pairs between training epochs.

Training with Triplet ranking loss. For the triplet loss we need

input tuples of the form (S, I+, I−) corresponding to a sketch, a
matching image, and a non-matching image. For the ranking loss,
our experiments suggest it is better to sample I+ and I− only from
the sketch category (e.g. a zebra sketch with a matching zebra photo
and non-matching zebra photo), because we will simultaneously
use a classification loss which differentiates sketches from photos
of different categories. Note that for our Triplet loss network the
two image branches still share weights. As a result, both Siamese
and Triplet networks will have one set of weights for the sketch
domain and one set of weights for the image domain.

We train networks using Caffe [Jia et al. 2014]. Appendix A de-
scribes additional training details. Training parameters such as
learning rate decay and batch size can be found in the supplemental
material. Figure 6 visualizes the embedding learned by this final
Triplet network. The non-linear projection from 1024D to 2D is
performed using t-SNE [van der Maaten and Hinton 2008].

4.3 Matching Sketches and Images

Our network consists of two subnetworks responsible for mapping
the input sketch and photo into a shared 1024 dimensional fea-
ture space.3 We can precompute features for large sketch or image
databases and rapidly search for matches when given a query.

5 Quantitative Evaluation

We evaluate our learned representation on two sketch-based im-
age retrieval benchmarks – the fine-grained benchmark of Li et
al. [2014] and the held out test set of the Sketchy database.

The Li et al. [Li et al. 2014] benchmark evaluates intra-category
sketch retrieval for a known category, e.g. given a sheep sketch
rank a set of sheep photos according to similarity. Retrieval re-
sults are scored based on how often the K = 5 top retrieved
images share discrete, hand-coded attributes of viewpoint, zoom,
part configuration, and body shape. Higher scores are better. We
evaluate on the 10 common categories between our datasets. This
benchmark assumes category-specific models but our Triplet net-
work is trained to simultaneously embed and recognize 125 object
categories. Nonetheless it slightly outperforms Li et al.’s category-
specific deformable part models on average, although their method
is better on three categories. Both methods outperform a spatial
pyramid (SP) baseline.

Table 1: Sketch retrieval benchmark of Li et al. [2014]

ours Li et al. SP
airplane 27.2 22 20.33
bicycle 21.5 11.67 13.83

car 15.8 18.83 14.5
cat 13.8 12.17 7.67

chair 21.7 20 20.33
cow 19.8 19.67 14
dog 21 9.5 6.83

horse 23.2 31.67 7.33
motorbike 13 22.5 9

sheep 21 17.67 5
average 19.8 18.57 11.88

We also evaluate several deep networks and baselines for sketch-
based retrieval on our held out test set of 6312 query sketches and
1250 photos spanning 125 categories. For each sketch query there

3The networks also output 125 dimensions corresponding to classifica-
tion confidences, but we discard these for retrieval applications.



Figure 6: t-SNE visualization of the Sketchy database test set of 1250 images and sketches. The images and sketches are embedded into
a common feature space with our best performing Triplet network. Note that nearby sketches and photos share not just the same category
but also similar shape and pose. Categories also seem to have arranged themselves by semantic similarity even though no such supervision
was provided – insects such as bees, scorpions, ants are grouped (lower left), as are small animals (top left), grazing animals (top center),
hand-held devices (top right), and fruits (bottom right).

Figure 7: Average recall at K = 1 on the Sketchy database test
set. This is the percentage of time that the highest ranking (smallest
distance) retrieved image is the single matching photo among 1250
test images. See main text for explanation of algorithm variants.
Green bars correspond to methods and features proposed in this
paper.

is a single matching photo (the photo that prompted the creation of
that sketch), and we measure performance by recall @ K. For a
particular sketch query, recall @ K is 1 if the corresponding photo
is within the top K retrieved results and 0 otherwise. We average
over all queries to produce Figures 7 and 8. Figure 7 focuses on
the most challenging K = 1 case. It shows how often the top
retrieval result is the single matching photo in the 1250 photo test
set. Figure 8 plots recall @ K for K = 1 to 10.

We estimate human performance at K = 1 by having participants
manually find the matching photo for a query sketch from our test
set. To ease the task we sort the photos into categories so that par-
ticipants need not browse 1,250 photos, but participants are not told
the ground truth category. After 772 trials, the human participants
select the correct photograph 54% of the time. This is not an “up-
per bound”, though – there was large variance in accuracy between
participants with some achieving greater than 70% K = 1 recall.
We include this human baseline in Figure 7.

We compare the following retrieval methods:

GN Triplet. This is our top-performing model, GoogLeNet trained
with Triplet and classification loss.

GN Siamese. GoogLeNet trained with Siamese and classification
loss.

GN Triplet w/o Cat. GoogLeNet trained exclusively with the
Triplet loss.

AN Siamese. AlexNet trained with Siamese and classification loss.

GN Cat. GoogLeNet trained exclusively with the classification loss
on the Sketchy database. The sketch and photo networks are trained
independently, but as they predict the same 125 categories their fi-
nal layer outputs are comparable. GN Cat is meant to represent a
“retrieval by categorization” method.

Chance. Photos are retrieved in random order.

Chance w/ Label. This represents a hypothetical algorithm which
can achieve perfect category recognition but ranks the results within
that category randomly. This is a strong baseline for our test set –
with 125 categories and 10 images per category, this baseline will



Figure 8: Evaluation on our test set. We measure recall at K –
whether or not the network can retrieve target image within Top
K nearest neighbors. See main text for explanation of algorithm
variants.

always find the matching photo within the top 10 out of 1250 re-
trieved photos.

GALIF. Gabor local line based feature [Eitz et al. 2012b]. This
feature describes sketches using a bank of Gabor filters. It was
used for sketch-based shape retrieval by rendering 3D objects as
sketches. We apply it to sketch-based image retrieval by performing
Canny edge detection on the photos before computing the feature.

SN. For another “retrieval by categorization” baseline, we fine-tune
GoogLeNet with the 250 category Eitz 2012 dataset and then use
the network as a feature extractor. Similar to GALIF approach, we
first use edge detection on photos then extract features from both
sketch and edge images. We use the 1024 dimensional penultimate
network layer activations as the feature.

SN w/ Label. Same as SN, except that we assume category recog-
nition is perfect as in the Chance w/ Label baseline. The SN rep-
resentation outperforms that baseline because it can still sort re-
sults within class. Even though this method has an oracle telling
it ground truth sketch and photo category, it still performs worse
than networks trained on fine-grained sketch-photo pairs for small
values of K.

Our benchmark leads us to conclude that the deeper GoogLeNet
significantly outperforms AlexNet for our task. Likewise, Triplet
loss significantly outperforms Siamese loss. Perhaps most surpris-
ing is the effect of combining classification loss with Triplet or
Siamese losses – incorporating classification loss significantly im-
proves fine-grained sketch retrieval even though it is the least suc-
cessful loss function on its own. Classification loss alone leads to
K = 1 recall of 12.6%, and Triplet loss alone leads to K = 1 re-
call of 22.8% but together the recall improves to 37.1%. This means
that one third of the time the single correct match out of 1250 test
photos is the first retrieval result. The correct match is within the
top 8 results 90% of the time.

Figure 10 shows examples of sketch-based image retrieval. For
each sketch query we show the top 10 retrieval results (smallest dis-
tance in the Triplet GoogLeNet feature space). We search a collec-
tion of 255,828 Flickr images. 125,000 of these photos come from
downloading 1,000 Flickr photos with tag searches based on the
125 Sketchy database categories. 130,828 more images are down-
loaded randomly. The query sketches come from the Eitz 2012
database. The retrieved photos generally depict objects of the de-
sired type in similar poses.

Evaluation of pre-training. We quantify the effect of pre-training by
incrementally adding pre-training with ImageNet, Eitz 2012, and

Flickr. All experiments conclude with 160 thousand iterations of
training on the Sketchy database with triplet and classification loss
and the GoogLeNet architecture. No pre-training (random initial
weights) leads to recall at K = 1 of 2%. Pre-training with Ima-
geNet leads to 28%. ImageNet and Eitz 2012 leads to 30%. Ima-
geNet and Flickr leads to 33%. Using all three for pre-training leads
to 36% recall at K = 1. This is slightly less than our best reported
model because of simplified training during these experiments.

Training on MS COCO object boundaries. We claim that human
object sketches are not particularly similar to object boundaries or
silhouettes. To test this, we train a network using object bound-
aries from MS COCO [Lin et al. 2014] rendered like our sketches.
We omit MS COCO instances that are partially occluded by other
objects or truncated by the image boundary. We train and evalu-
ate on the 13 object categories that overlap between the Sketchy
and COCO databases and have at least 500 object instances. The
MS COCO “sketches” are centered and scaled in the same manner
as the Sketchy database and used to train networks with only Ima-
geNet pre-training. For these 13 categories, the network trained on
the Sketchy database performs significantly better – 35% vs 11%
K = 1 recall. This suggests that faithful object boundaries are not
a good proxy for human-drawn object sketches.

6 Visualization: Average Objects

If our learned representation allows us to retrieve semantically sim-
ilar objects with similar poses it could enable an object synthesis
or data exploration tool in the spirit of AverageExplorer [Zhu et al.
2014]. AverageExplorer operates on constrained image sets, e.g.
image search results for “kids with Santa” or “a brown tabby cat”
but we aim to create average images from a diverse collection of
255,828 Flickr images with no user intervention beyond the initial
query sketch.

The primary challenge is that our retrieval results (Figure 10) con-
tain objects at different scales and locations, even when the pose
and object attributes are fairly similar. This means that a naive av-
erage of the top retrieved photos is very blurry. In Section 3 we
speculated that our sketch-photo training pairs implicitly encode
information about which image structures are salient. We use the
approach of Zeiler and Fergus [2014] to localize “salient” regions
as learned by our deep network. The approach is conceptually sim-
ple – we grey out image regions and if that leads to a large change
in the final network layer activations then we must have removed
a salient structure. Figure 9a shows that this does indeed tend to
localize objects in photos. Figure 9b shows an average image com-
puted by centering and rescaling top retrieval results such that the
salient regions overlap. Such averages are sharper than unaligned
averages but still blurry.

To improve the averages further we use FlowWeb [Zhou et al.
2015] to find correspondences among the retrieved photos and the
query sketch. Aligning the sketch to the detected edges of the
photos works slightly better than using the photos directly. Fig-
ure 9b shows averages computed after the retrieved photos have
been transformed according to FlowWeb correspondences. The
FlowWeb algorithm was generally unable to find correspondences
if we skipped the salience-based alignment and centering. We think
that these average images demonstrate the ability of our learned rep-
resentation to find cross-domain matches and hints at the possibility
of new sketch-based image synthesis techniques.

7 Limitations and Future Opportunities

Limitations. Our data collection and training assumes that there
are three discrete levels of similarity between sketches and photos –



Figure 9: In (a) we align top retrieval results such that the salient
regions overlap and this produces a cleaner average image. (b)
shows examples of average images from our top 20 results. Fine-
grained alignment with the overlaid sketch is based on correspond-
ing points from Flowweb [Zhou et al. 2015].

the same instance, the same category, or completely dissimilar. But
sketch-photo similarity as perceived by a human would of course
be more continuous. It is not economical to collect all pairs of per-
ceptual distances between 75,471 sketches and 12,500 photos and
it doesn’t appear necessary to learn a useful representation. Still,
it would probably help to have more annotations, especially within
categories where it seems unsatisfactory to assume that there is only
one valid match for any sketch query – there could be several pho-
tos that match a sketch reasonably well. The Triplet ranking loss
naturally accommodates such finer-grained supervision. This limi-
tation is addressed by “Sketch Me that Shoe” [Yu et al. 2016], but
their database is considerably smaller.

Possible applications of the Sketchy Database

Previous portrait synthesis methods [Berger et al. 2013;
Limpaecher et al. 2013] used sketch-photo pairs to aid the gen-
erative photo to sketch process. Our database could be used as
training data for generating sketches of photographic objects. In
the other direction, previous methods synthesized images from
sketches [Chen et al. 2009; Eitz et al. 2011b] and the Sketchy
database could be used to improve the sketch-based retrieval at the
core of these methods or to directly learn deep generative image
models [Dosovitskiy et al. 2014]. The database could also enable

the study of the humans artists analogous to “Where do people draw
lines” [Cole et al. 2008] which studied drawings of 3D shapes. Fi-
nally, while we were motivated to collect the Sketchy database to
provide training data for deep networks, it can also serve as an
image-retrieval benchmark for a field that has a shortage of large
scale benchmarks.
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A Miscellaneous training details

Undoing mirror invariance. The original ImageNet training and
the sketch and photo subnetwork pre-training have the unfortunate
side effect of making the networks largely mirror invariant. This is
to be expected when using a classification loss – mirroring should
not affect the predicted category. Although mirror invariance may
be desirable for some sketch-based retrieval applications such as
product search, we want more pose sensitivity. Building positive
training pairs out of similarly oriented sketch-photo pairs was not
enough to overcome the pre-training. By using sketch-photo pairs
where only one of the domains has been mirrored as negative train-
ing pairs we are able to make the networks “forget” mirror invari-
ance while maintaining high classification accuracy.

Closing the Triplet cross-domain gap. Unlike the Siamese net-
work, the loss function for the Triplet network only requires posi-
tive pairs to be closer than negative pairs, but not necessarily close
in an absolute sense. Since each subnetwork has its own weights,
there is no guarantee that the feature for sketch and image would
lie in the same space as long as the right match is at the clos-
est distance among all other matches from the same domain. To
encourage the network to close this gap, we further fine-tune the
triplet network with an additional loss term based on the distance
between the positive sketch and photo pair. The loss becomes:
L = c1∗D(S, I+)+c2∗max(0,m+D(S, I+)−D(S, I−) where
c1 and c2 control the relative influence of the absolute distance loss
and the Triplet loss. It is possible to avoid this complication by us-
ing only the Siamese contrastive loss, but the Triplet network per-
forms better on our sketch-based image retrieval benchmark.

Feature Dimension. In our Triplet GoogLeNet experiments, we fix
the output dimension to 1024 when comparing features. However,
we can reduce the output dimensionality by adding an additional
fully connected layer with fewer hidden units before the loss layer.
We can compute 64-dimensional features with little decrease in re-
trieval accuracy. See the supplemental material for more details.



Figure 10: Qualitative retrieval results. Queries are sampled from the Sketchy database test set. Matching photos are retrieved from a held
out collection of 450 thousand Flickr photos, of which 50k are retrieved by querying categories in the Sketchy database and 400k are random.
There is no ground truth, but clearly incorrect retrieval results are highlighted in red.


